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Abstract In this article we introduce the notions of Kuhn-Tucker and Fritz John
pseudoconvex nonlinear programming problems with inequality constraints. We derive sev-
eral properties of these problems. We prove that the problem with quasiconvex data is (sec-
ond-order) Kuhn-Tucker pseudoconvex if and only if every (second-order) Kuhn-Tucker
stationary point is a global minimizer. We obtain respective results for Fritz John pseudo-
convex problems. For the first-order case we consider Fréchet differentiable functions and
locally Lipschitz ones, for the second-order case Fréchet and twice directionally differentia-
ble functions.
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1 Introduction

In this article we investigate a theorem which appeared in Crouzeix, Ferland [10, Lemma 2.1].
The theorem says that a real Fréchet differentiable quasiconvex function f , defined on an
open convex set S ⊆ Rn , is pseudoconvex on S if and only if each stationary point of f is a
global minimizer.

Consider the nonlinear programming problem with inequality constraints and a set con-
straint

Minimize f (x) subject to x ∈ X, gi (x) ≤ 0, i = 1, 2, . . ., m (P)

where X is an open convex set in the finite dimensional Euclidean space Rn and the functions
gi , i = 1, 2, . . ., m are defined on X . We define the notions KT pseudoconvexity and FJ one
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for the problem (P) with locally Lipschitz functions in terms of the Clarke’s generalized
derivative. We prove that pseudoconvex problems obey some useful properties. We show
that the Fréchet differentiable problem with quasiconvex objective function and quasiconvex
constraints is KT pseudoconvex if and only if each KT point is a global minimizer. We prove
that the locally Lipschitz problem with quasiconvex objective function and strictly quasi-
convex constraints is FJ pseudoconvex if and only if every FJ point is a global minimizer.
We obtain an extension of the sufficient conditions for a global minimum to problems with
quasiconvex objective function and non-quasiconvex constraints. Sufficient conditions for a
global minimum are derived in Arrow, Enthoven [1], Mangasarian [26], Bector, Grover [4],
Bhatt, Mishra [7], Singh [29], Skarpness, Sposito [30], Bector, Bector [3], Bector, Chandra,
Bector [5], Giorgi [16].

In all mentioned articles are given only sufficient criteria for a global minimum, but
our conditions are both necessary and sufficient. Necessary and sufficient conditions are
obtained in Tanaka, Fukushima, Ibaraki [32, Theorem 3.5] under the assumption that all
functions are essentially pseudoconvex, locally Lipschitz and regular in the sense of Clarke,
the problem is calm. Another generalization, based on a different idea, is obtained in Ivanov
[21].

We define the notions of second-order KT pseudoconvex problem and second-order FJ
pseudoconvex one with inequality constraints. We prove some properties of these problems.
We prove that the problem (P) with Fréchet and twice directionally differentiable quasicon-
vex data is second-order KT pseudoconvex if and only if every second-order KT point is a
global minimizer. We show that the problem (P) with quasiconvex objective function and
strictly quasiconvex constraints is second-order FJ pseudoconvex if and only if each Fritz
John point of second-order is a global minimizer. We obtain an extension of the second-
order sufficient optimality conditions in Ginchev, Ivanov [13, Theorems 1, 3]. All mentioned
results are connected with the theorem of Crouzeix and Ferland. Additionally we give strict
variants of all theorems.

The definitions of pseudoconvex problems are based on the standard notion of a pseudo-
convex function due to Mangasarian [26, Definition 9.3.1]. Another definition of a pseudo-
convex function is available in the literature [19].

Here is the history of the theorem of Crouzeix and Ferland. It appeared in 1982 after
some earlier results of Martos [27], Cottle, Ferland [9], Ferland [12, Theorem 12]. In 1983
Komlósi [23, Theorem 2] extended the theorem to radially continuous functions using Dini
derivatives. After that other generalizations are obtained by Aussel [2, Theorem 4.1] and
Ivanov [20, Theorem 5.1] using subdifferentials. Another characterization of pseudoconvex
functions, based on the theorem of Crouzeix and Ferland, is derived independently by Giorgi
[15] and Tanaka [31]. Later the last one is generalized by Penot [28, Proposition 13] and
Ivanov [20, Theorem 5.2].

In the sequel we denote the scalar product of the vectors a, b ∈ Rn by a b, the closed
segment in Rn with endpoints x and y by [x, y] and the respective open segment by (x, y),
the closed non-negative orthant in Rn by Rn+. We use the notation := for “equal by def-
inition”. We denote by g the vector function with components gi , i = 1, 2, . . ., m. The
notation f ∈ C1(X), g ∈ C1(X) implies that f and g are continuously differentiable on
X .

The article is organized as follows: In Sect. 2 we define the notions of KT and FJ pseudo-
convex problems. We obtain the first-order extensions of the theorem of Crouzeix and Ferland
using these definitions. In Sect. 3 we define the notions of second-order KT and FJ pseudo-
convex problems. Then we apply these definitions in the second-order extensions of the
theorem.
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2 First-order extensions

2.1 KT pseudoconvex problems

We begin this section with some well-known definitions:

Definition 2.1 Let X ⊆ Rn be a convex set. A function f : X → R is called:

(i) quasiconvex on X if
f (x + t (y − x)) ≤ max( f (x), f (y)), ∀x ∈ X , ∀y ∈ X , ∀t ∈ [0, 1];

(ii) semistrictly quasiconvex on X if
x , y ∈ X , f (y) < f (x) imply f (x + t (y − x)) < f (x), ∀t ∈ (0, 1);

(iii) strictly quasiconvex on X if
f (x + t (y − x)) < max( f (x), f (y)), ∀x ∈ X , ∀y ∈ X , ∀t ∈ (0, 1).

Every strictly quasiconvex function is semistrictly quasiconvex and every lower semicontin-
uous semistrictly quasiconvex function is quasiconvex.

The following definition about quasiconvexity for differentiable functions is used in the
sufficient conditions for a global minimum:

Definition 2.2 Let X be an open set and f differentiable at x ∈ X . Then f is said to be
quasiconvex at x with respect to X if

y ∈ X, f (y) ≤ f (x) imply ∇ f (x)(y − x) ≤ 0. (2.1)

A differentiable function f is called quasiconvex on X if this implication holds for all x ∈ X .

If X is open and convex, and f differentiable on X , then both definitions about quasiconvexity
are equivalent (see Arrow, Enthoven [1]).

Definition 2.3 Let X ⊆ Rn be an open set and f a locally Lipschitz function, defined on
X . The Clarke’s generalized derivative [8] of f at the point x ∈ X in the direction d ∈ Rn

is defined as follows:

f 0(x; d) := lim sup
(t,x ′)→(+0,x)

t−1( f (x ′ + td) − f (x ′))

and the Clarke’s generalized gradient of f at x by

∂ f (x) := {ξ ∈ Rn | ξd ≤ f 0(x; d), ∀d ∈ Rn}.

The Clarke’s generalized gradient is a nonempty compact set and therefore it is linked to the
directional derivative by the following equality:

f 0(x; d) = max{ξd | ξ ∈ ∂ f (x)} for all d ∈ Rn . (2.2)

The Clarke’s derivative satisfies several useful properties. The following one is among
them:

f 0(x;−d) = (− f )0(x; d) for all x ∈ X, d ∈ Rn . (2.3)
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Definition 2.4 Let X ⊆ Rn be an open set. The function f , defined on X , is said to be
(strictly) pseudoconvex with respect to the Clarke’s generalized derivative (for short, (strictly)
pseudoconvex ) at x ∈ X if

y ∈ X and f (y) < f (x) ( f (y) ≤ f (x), y �= x) imply f 0(x; y − x) < 0.

f is said to be (strictly) pseudoconvex on X if this implication holds for all x ∈ X . It follows
from relation (2.2) that this definition is equivalent to the following implication:

f (y) < f (x) ( f (y) ≤ f (x), y �= x) ⇒ ξ(y − x) < 0, ∀ξ ∈ ∂ f (x).

The function f is said to be (strictly) pseudoconcave if (− f ) is (strictly) pseudoconvex.

The next claim is a generalization of a result due to Karamardian [22] concerning Fréchet
differentiable functions.

Proposition 2.1 Let the function f be locally Lipschitz pseudoconvex with respect to the
Clarke’s generalized derivative on the open convex set X ⊆ Rn. Then f is semistrictly
quasiconvex on X.

Proof Suppose the contrary that f is not semistrictly quasiconvex. Therefore there exist
x, y ∈ X and z = x + λ(y − x), λ ∈ (0, 1) such that f (y) < f (x) ≤ f (z). It follows from
pseudoconvexity that f 0(z; y − z) < 0. Using the relation z − x = λ

1−λ
(y − z) and (2.3) we

obtain that

(− f )0(z; x − z) = f 0(z; z − x) = λ

1 − λ
f 0(z; y − z) < 0 (2.4)

Since the function (− f ) is pseudoconcave, we conclude from here that (− f )(x) ≤ (− f )(z).
Hence f (y) < f (x) = f (z). It follows from (2.4) that there exists τ > 0 with

(− f )(z + t (x − z)) < (− f )(z) for all t ∈ (0, τ ).

Take arbitrary t ∈ (0, τ ). Denote u = z + t (x − z). Since the Clarke’s generalized gradient
is a nonempty set, then there exists ξ ∈ ∂ f (u). Thanks to f (y) < f (x) < f (u) we have that

ξ(x − u) ≤ f 0(u; x − u) < 0 and ξ(y − u) ≤ f 0(u; y − u) < 0

which is impossible. 
�
A similar claim holds for strictly pseudoconvex functions.

Proposition 2.2 Each locally Lipschitz strictly pseudoconvex function, defined on an open
convex set X, is strictly quasiconvex.

Proof Assume the contrary that there exist x , y ∈ X and z ∈ (x, y) with

f (y) ≤ f (x) ≤ f (z).

Since ∂ f (z) �= ∅ we have that there exists ξ ∈ ∂ f (z). By the strict pseudoconvexity of f we
obtain

ξ(x − z) ≤ f 0(z; x − z) < 0, ξ(y − z) ≤ f 0(z; y − z) < 0.

These inequalities contradict each other. 
�
The next claim is a particular case of Theorem 2.1 in Aussel [2].
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Lemma 2.1 Let the function f be locally Lipschitz on the open convex set X ⊆ Rn. Then f
is quasiconvex on X if and only if for all x, y ∈ X the following implication holds:

f 0(x; y − x) > 0 ⇒ f (z) ≤ f (y), ∀z ∈ [x, y].

It follows from here that each quasiconvex function satisfies the implication

x, y ∈ X, f (y) < f (x) ⇒ f 0(x; y − x) ≤ 0.

When the function is Fréchet differentiable, then implication (2.1) is fulfilled.
The following simple example shows that implication (2.1) fails for locally Lipschitz

quasiconvex functions when the Clarke’s generalized gradient is used.

Example 2.1 Consider the function f : R → R defined by

f (x) =
{

0, if x ≥ 0,

x, if x < 0.

It is locally Lipschitz and quasiconvex. We have f 0(0; d) = d if d ≥ 0, and f 0(0; d) = 0
if d < 0. Therefore ∂ f (0) = [0, 1] and f (y) = f (0) = 0 if y > 0, but ξ y > 0 if y > 0 and
ξ > 0.

On the other hand the following result due to Daniilidis, Hadjisavvas [11, Theorem 3.1]
shows that property (2.1) holds when the function is locally Lipschitz semistrictly quasicon-
vex and the Clarke’s generalized gradient is applied.

Lemma 2.2 A locally Lipschitz function f , defined on an open convex set X in Rn, is semi-
strictly quasiconvex on X if and only if for all x, y ∈ X the following implication holds:

f 0(x; y − x) > 0 ⇒ f (z) < f (y), ∀z ∈ [x, y).

It follows from here that every locally Lipschitz semistrictly quasiconvex function satisfies
the following implication:

x, y ∈ X, f (y) ≤ f (x) ⇒ f 0(x; y − x) ≤ 0. (2.5)

It is proved in Komlósi [24, Theorem 4.4] that for a function which is not a constant on
any line segment [x, y] of its domain (radially non-constant function) implication (2.5) is
equivalent to quasiconvexity. On the other hand a function is strictly quasiconvex if and only
if it is both quasiconvex and radially non-constant.

We denote the set of all feasible points of (P) by

S := {x ∈ X | gi (x) ≤ 0, i = 1, 2, . . ., m}.
For every x ∈ S let I (x) be the set of the active constraints

I (x) := {i ∈ {1, 2, . . ., m} | gi (x) = 0}.
We call the problem (P) locally Lipschitz if f and gi , i = 1, 2, . . ., m are locally Lipschitz.

The following result is well-known (see Clarke [8, Theorem 6.1.1]).

Lemma 2.3 (Necessary condition for a local minimum) Let X be an open set in the space
Rn. Suppose that x is a local minimizer of (P), the functions f , gi , i ∈ I (x) are locally
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Lipschitz and the functions gi , i /∈ I (x) are continuous. Then there exist Lagrange multipli-
ers λ ≥ 0, µ = (µ1, µ2, . . ., µm) ∈ Rm+ , with (λ, µ) �= (0, 0) and a ∈ ∂ f (x), bi ∈ ∂gi (x),
i ∈ I (x) such that

λa +
∑

i∈I (x)

µi bi = 0, µi gi (x) = 0, i = 1, 2, . . ., m. (2.6)

If additionally we assume that a constraint qualification holds (see Hiriart-Urruty [18]), then
we can suppose that λ > 0.

Definition 2.5 If there exist (λ, µ) ∈ ([0,+∞)×Rm+)\{(0, 0)}, a ∈ ∂ f (x), and bi ∈ ∂gi (x),
i ∈ I (x) such that equations (2.6) hold, then the point x ∈ S is called a Fritz John stationary
point (for short, FJ point). If additionally λ = 1, then x is called a Kuhn-Tucker stationary
point (for short, KT point).

The following claim is a simple consequence of Definition 2.5:

Lemma 2.4 Let the problem (P) be locally Lipschitz and x ∈ X.

(a) If 0 ∈ ∂ f (x), then x is a KT point.
(b) If 0 ∈ ∂gi (x) for some i ∈ I (x), then x is a FJ point.

The following assertions play crucial role in several proofs below.

Lemma 2.5 Let the function f be locally Lipschitz on the open convex set X ⊆ Rn.

(a) If f is quasiconvex on X, x, y∈X, f (y)< f (x) and f 0(x; y − x) = 0, then 0∈∂ f (x). In
particular, if f is Fréchet differentiable quasiconvex on X and x, y ∈ X, f (y) < f (x),
∇ f (x)(y − x) = 0, then ∇ f (x) = 0.

(b) If f is strictly quasiconvex on X, x, y ∈ X, x �= y, f (y) ≤ f (x) and f 0(x; y − x) = 0,
then 0 ∈ ∂ f (x). In particular, if f is Fréchet differentiable strictly quasiconvex on X
and x, y ∈ X, x �= y, f (y) ≤ f (x), ∇ f (x)(y − x) = 0, then ∇ f (x) = 0.

Proof We prove Claim (a). It follows from relation (2.2) that f 0(x; y − x) = max{ξ(y − x) |
ξ ∈ ∂ f (x)}. Therefore there exists a∗ ∈ ∂ f (x) such that a∗(y − x) = f 0(x; y − x) = 0. By
the continuity of f we obtain from the inequality f (y) < f (x) that there exists δ > 0 with
f (y + δa∗) < f (x). According to Lemma 2.1 we conclude that a∗(y + δa∗ − x) ≤ 0. Then
a∗(y − x) = 0 implies that a∗ = 0. Hence 0 ∈ ∂ f (x).

Claim (b). It follows from relation (2.2) that there exists a∗ ∈ ∂ f (x) with a∗(y − x) = 0.
Choose arbitrary z ∈ (x, y). By strict quasiconvexity f (z) < f (x). There exists δ > 0 such
that f (z + δa∗) < f (x). Using the arguments of Claim (a) we obtain that a∗ = 0. 
�

We consider the following optimality conditions for the problem with inequality con-
straints given in [26, Theorem 10.1.1].

Proposition 2.3 Let X be an open set in Rn. Suppose that f is Fréchet differentiable and
pseudoconvex at x, gi , i ∈ I (x) are Fréchet differentiable and quasiconvex at x. If x ∈ S is
a KT point of the problem (P), then it is a global minimizer.

It is easy to see that we can relax the hypothesis of this proposition. For x to be a global
minimizer it is enough to suppose that the following implications hold together:

y ∈ S, f (y) < f (x) ⇒ ∇ f (x)(y − x) < 0
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and

y ∈ S, i ∈ I (x) ⇒ ∇gi (x)(y − x) ≤ 0

which is weaker than the assumption f is pseudoconvex at x and gi , i ∈ I (x) are quasiconvex
at x separately.

We introduce the following definition:

Definition 2.6 We call the problem (P) (strictly) KT pseudoconvex at the point x ∈ S with
respect to the Fréchet derivative if the following implication holds:

y ∈ S,

f (y) < f (x)

]
⇒

[∇ f (x)(y − x) < 0,

∇gi (x)(y − x) ≤ 0 for all i ∈ I (x)(
y ∈ S, y �= x,

f (y) ≤ f (x)

]
⇒

[∇ f (x)(y − x) < 0,

∇gi (x)(y − x) ≤ 0 for all i ∈ I (x).

)

We call (P) (strictly) KT pseudoconvex if it is (strictly) KT pseudoconvex at each x ∈ S.

It is obvious that if (P) is (strictly) KT pseudoconvex, then the objective function is (strictly)
pseudoconvex on S. On the other hand, even in the classical Fréchet differentiable case, the
condition (P) is KT pseudoconvex does not imply that the constraints are quasiconvex.

Example 2.2 Consider the problem (P) with f , g : R → R where

f = x2, g(x) = x4 − 5x2 + 4, X = (−∞,+∞).

It is seen that (P) is KT pseudoconvex, but g is not quasiconvex. Indeed, g(x) = 0 if
x = ±1,±2. If x = ±1, then there is no a feasible point y such that f (y) < f (x).

Theorem 2.1 Let X ⊆ Rn be an open and convex set. Suppose that f is Fréchet differen-
tiable and (strictly) quasiconvex on X, gi , i = 1, 2, . . ., m are Fréchet differentiable and
quasiconvex on X. Then the problem (P) is (strictly) pseudoconvex if and only if each KT
point is a (strict) global minimizer.

Proof We prove the non-strict case. The proof of the strict one is similar.
Let every KT point be a global minimizer. We prove that (P) is KT pseudoconvex. Suppose

that x, y ∈ S and f (y) < f (x). We have to prove that ∇ f (x)(y − x) < 0. Assume the con-
trary that ∇ f (x)(y−x) ≥ 0. It follows from the quasiconvexity of f that ∇ f (x)(y−x) = 0.
By Lemma 2.5 ∇ f (x) = 0. We conclude from Lemma 2.4 that x is a KT point. By the hypoth-
esis of the theorem x is a global minimizer which contradicts the assumption f (y) < f (x).

The claim ∇gi (x)(y − x) ≤ 0 follows directly from the assumption gi (y) ≤ 0 = gi (x),
i ∈ I (x) and the quasiconvexity of gi .

At last, we prove the only if part. Suppose that (P) is KT pseudoconvex and x is an arbitrary
KT point. Assume that x is not a global minimizer. Hence there is y ∈ S with f (y) < f (x).
Since x is a KT point there exist λ > 0 and µi ≥ 0, i ∈ I (x) which satisfy the following
equation:

λ∇ f (x) +
∑

i∈I (x)

µi∇gi (x) = 0. (2.7)

Then we multiply the inequality ∇ f (x)(y − x) < 0 by λ and ∇gi (x)(y − x) ≤ 0 by µi and
add all obtained inequalities. Thus we conclude from (2.7) that 0 < 0 which is impossible.
Therefore x is a global minimizer. 
�
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Definition 2.7 We call the locally Lipschitz problem (P) (strictly) KT pseudoconvex at the
point x ∈ S with respect to the Clarke’s generalized derivative if the following implication
holds

y ∈ S,

f (y) < f (x)

]
⇒

[
f 0(x; y − x) < 0,

g0
i (x; y − x) ≤ 0 for all i ∈ I (x).(

y ∈ S, y �= x,

f (y) ≤ f (x)

]
⇒

[
f 0(x; y − x) < 0,

g0
i (x; y − x) ≤ 0 for all i ∈ I (x).

)

We call (P) (strictly) KT pseudoconvex if it is (strictly) KT pseudoconvex at each x ∈ S.

Theorem 2.2 Let X be an open set in Rn. Suppose that the problem (P) is locally Lipschitz
and (strictly) KT pseudoconvex. Then

(a) each KT point is a (strict) global minimizer;
(b) every local minimizer of (P) is a global one, provided that a constraint qualification

holds [18].

Proof Claim (a). We consider the non-strict case. Suppose that x is a KT point, but it is not
a global minimizer. Therefore there exists y ∈ S with f (y) < f (x). Since x is a KT point,
we obtain that there are (λ, µ) ∈ (0,+∞) × Rm+ and a ∈ ∂ f (x), bi ∈ ∂gi (x), i ∈ I (x) such
that equations (2.6) hold. On the other hand, by the KT pseudoconvexity of (P) we have
a(y − x) < 0 and bi (y − x) ≤ 0, i ∈ I (x). Then⎛

⎝λa +
∑

i∈I (x)

µi bi

⎞
⎠ (y − x) < 0

which contradicts the equations (2.6).
Claim (b) follows from Lemma 2.3 and Claim (a). 
�
Claim (a) generalizes the sufficient optimality conditions in [1,3,4,7,16,26,29] when the

problem does not contain equality constraints.

Theorem 2.3 Let X be an open convex set and the problem (P) be locally Lipschitz. Sup-
pose additionally that f is (strictly) quasiconvex and gi , i = 1, 2, . . ., m are semistrictly
quasiconvex. Then (P) is (strictly) KT pseudoconvex if and only if each KT point is a (strict)
global minimizer.

Proof We consider the non-strict case. Assume that each KT point of (P) is a global min-
imizer. We prove that the program (P) is KT pseudoconvex. Let x , y ∈ S be such that
f (y) < f (x). Following this aim we prove that f 0(x; y − x) < 0. Assume the contrary
that f 0(x; y − x) ≥ 0. According to Lemma 2.1 we obtain that f 0(x; y − x) = 0. Then we
obtain from Lemma 2.5 that 0 ∈ ∂ f (x). It follows from Lemma 2.4 that x is a KT point. By
the hypothesis x is a global minimizer which contradicts the assumption f (y) < f (x).

The claim g0
i (x; y − x) ≤ 0 for i ∈ I (x) follows from Lemma 2.2.

The only if part is a Theorem 2.2, Claim (a). 
�
The following result is a strict variant of the Theorem of Crouzeix and Ferland.

Corollary 1 Let the function f be locally Lipschitz and strictly quasiconvex on the open
convex set X. Then f is strictly pseudoconvex if and only if each point x such that 0 ∈ ∂ f (x)

is a strict global minimizer.
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Proof The proof follows from the strict case when the problem has no constraints. Let
0 ∈ ∂ f (x) imply that x is a strict global minimizer. Suppose that y ∈ X , y �= x , f (y) ≤ f (x)

and f 0(x; y−x) ≥ 0. It follows from strict quasiconvexity that f 0(x; y−x) = 0. By Lemma
2.5 we have 0 ∈ ∂ f (x) which is impossible. 
�

The following example shows that we cannot replace in Theorem 2.3 the condition gi ,
i ∈ I (x) are semistrictly quasiconvex by gi , i ∈ I (x) are quasiconvex.

Example 2.3 Consider the problem (P) where f , g : R → R and X = (−1, 1). We take
f (x) = −x and g(x) is the function from Example 2.1. It is obvious that f is pseudoconvex,
g is quasiconvex, but not strictly quasiconvex, and x = 0 is a KT point, but it is not a global
minimizer.

Theorem 2.4 Let the set X be open and convex. Suppose that (P) is locally Lipschitz. If the
objective function f is (strictly) quasiconvex and each KT point of (P) is a (strict) global
minimizer, then f is (strictly) pseudoconvex on S.

Proof The proof repeats some of the arguments of Theorem 2.3. 
�

2.2 FJ pseudoconvex problems

We introduce the following definition:

Definition 2.8 We call the problem (P) (strictly) FJ pseudoconvex at the point x ∈ S with
respect to the Clarke’s generalized derivative if the following implication holds:

y ∈ S,

f (y) < f (x)

]
⇒

[
f 0(x; y − x) < 0,

g0
i (x; y − x) < 0 for all i ∈ I (x).(

y ∈ S, y �= x,

f (y) ≤ f (x)

]
⇒

[
f 0(x; y − x) < 0,

g0
i (x; y − x) < 0 for all i ∈ I (x).

)

We call (P) (strictly) FJ pseudoconvex if it is (strictly) FJ pseudoconvex at each x ∈ S.

The notion (strict) FJ pseudoconvexity implies (strict) KT pseudoconvexity.
FJ Pseudoconvex problems possess some useful properties.

Theorem 2.5 Let X be an open convex set. Suppose that the problem (P) is locally Lipschitz
and strictly FJ pseudoconvex. Then the feasible set S is convex.

Proof Assume the contrary that there exist x , y ∈ S and z ∈ (x, y) such that z /∈ S. Using that
all constraint functions are continuous we obtain that the set [x, y] ∩ S is closed. Therefore
there is an open interval (u, v) ⊂ [x, y] containing z such that (u, v) ∩ S = ∅. We suppose
that (u, v) is the union of all open subintervals of [x, y] which include z and they do not
intersect S. Without loss of generality we can suppose that f (v) ≤ f (u).

We prove that u ∈ S. By the maximality of (u, v) every neighborhood of u contains a point
from [x, y]∩ S. Therefore there exists an infinite sequence {αk} such that αk ∈ [x, y]∩ S and
αk → u. We conclude from here that u ∈ S. Using similar arguments we prove that v ∈ S.

We prove that there exists an infinite sequence {uk} and an index j ∈ {1, 2, . . ., m} such
that g j (u) = 0, uk ∈ (u, v), uk → u. Indeed, choose arbitrary infinite sequence uk ∈ (u, v),
uk → u. For every integer k, by uk /∈ S, there exists an index i such that gi (uk) ≤ 0 is
not satisfied. Therefore there exists an index j and an infinite subsequence of {uk} such that
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g j (uk) > 0 for every term of this subsequence. Without loss of generality we denote this
subsequence by {uk} again. It follows from u ∈ S, uk → u, g j (uk) > 0 that g j (u) = 0.

By the strict FJ pseudoconvexity of (P) we have that g0
j (u; v − u) < 0. Hence

lim sup
t→+0

t−1(g j (u + t (v − u)) − g j (u)) < 0

and there exist δ > 0 with g j (u + t (v − u)) < g j (u) for all t ∈ (0, δ) which contradicts the
choice of {uk}. 
�

Example 2.2 shows that the assumption (P) is strictly FJ pseudoconvex is essential in
Theorem 2.5. Really, (P) is FJ pseudoconvex, but not strictly FJ pseudoconvex and S is not
convex.

Theorem 2.6 Let X be an open set in Rn. Suppose that the problem (P) is locally Lipschitz
and (strictly) FJ pseudoconvex. Then

(a) each FJ point is a (strict) global minimizer;
(b) every local minimizer of (P) is a global one.

Proof The proof of Claim (a) is similar to the proof of Theorem 2.2.
Claim (b) follows from Lemma 2.3 and Claim (a). 
�
Claim (a) extends the respective results in [5,30] when the problem does not contain

equality constraints.

Theorem 2.7 Let X be an open convex set and the problem (P) be locally Lipschitz. Suppose
additionally that f is (strictly) quasiconvex and gi , i = 1, 2, . . ., m are strictly quasicon-
vex. Then (P) is (strictly) FJ pseudoconvex if and only if each FJ point is a (strict) global
minimizer.

Proof Consider the non-strict case. Assume that every FJ point of (P) is a global minimizer.
We prove that (P) is FJ pseudoconvex. Let x , y ∈ S be such that f (y) < f (x).

First, we prove that f 0(x; y − x) < 0. Assume the contrary. It follows from Lemma
2.1 that f 0(x; y − x) = 0. Then by Lemma 2.5 we obtain that 0 ∈ ∂ f (x). According to
Lemma 2.4 x is a FJ point. By the hypothesis x is a global minimizer which contradicts the
assumption f (y) < f (x).

Second, we prove that g0
i (x; y − x) < 0 for i ∈ I (x). Suppose the contrary that g0

i (x; y −
x) ≥ 0. By Lemma 2.2 we obtain that g0

i (x; y − x) = 0. Thanks to Lemma 2.5 we have
0 ∈ ∂gi (x). Using Lemma 2.4 we conclude that x is FJ point. Therefore it is a global
minimizer which contradicts the assumption y ∈ S and f (y) < f (x).

The only if part of the non-strict case follows from Theorem 2.6, Claim (a). 
�

3 Second-order extensions

3.1 Second-order KT pseudoconvex problems

Recall the following preliminary definitions:

Definition 3.1 Let f : Rn → R be a Fréchet differentiable function. The limit

f ′′(x; d) := lim
t→+0

2t−2 ( f (x + td) − f (x) − t∇ f (x)d )
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is called the second-order directional derivative of f at the point x ∈ Rn in the direction
d ∈ Rn .

Definition 3.2 Let the functions f and gi , i = 1, 2, . . ., m be Fréchet differentiable. A
direction d is called critical at the point x ∈ S [6] if ∇ f (x)d ≤ 0 and ∇gi (x)d ≤ 0 for all
i ∈ I (x).

If a direction d is not critical at x ∈ S, then ∇ f (x)d > 0 or there exists i ∈ I (x) such
that ∇gi (x)d > 0. Therefore there is τ > 0 with f (x + td) > f (x) for all t ∈ (0, τ ) or
gi (x + td) > 0 for some i ∈ I (x) and for all t ∈ (0, τ ). If x̄ is a local minimizer and d is
a critical direction, then it is possible that there exists a sequence {tk}, tk > 0, tk → 0 with
x + tkd ∈ S and f (x + tkd) = f (x).

The following definition was recently introduced by Ginchev, Ivanov [13].

Definition 3.3 Consider a real function f with an open domain X , which is Fréchet differ-
entiable at x ∈ X and second-order directionally differentiable at x ∈ X in every direction
y − x such that y ∈ X , f (y) < f (x), ∇ f (x)(y − x) = 0. Then f is called second-order
(strictly) pseudoconvex at x ∈ X if for all y ∈ X the following implications hold:

f (y) < f (x) ⇒ ∇ f (x)(y − x) ≤ 0;
f (y) < f (x), ∇ f (x)(y − x) = 0 ⇒ f ′′(x; y − x) < 0.

( f (y) ≤ f (x), y �= x, ∇ f (x)(y − x) = 0 ⇒ f ′′(x; y − x) < 0.)

The function f is called second-order (strictly) pseudoconvex on X if both implications hold
for all x ∈ X .

It follows from this definition that every differentiable pseudoconvex function is second-order
pseudoconvex. The converse does not hold.

The following result is a particular case of Theorem 4 in Ginchev, Ivanov [13].

Proposition 3.1 Let f be a Fréchet differentiable and second-order directionally differen-
tiable second-order pseudoconvex function, defined on an open convex set X ⊆ Rn. Then f
is quasiconvex, and moreover, f is semistrictly quasiconvex.

On the other hand a similar result holds for second-order strictly pseudoconvex functions.

Proposition 3.2 Let f be a Fréchet differentiable and second-order directionally differen-
tiable second-order strictly pseudoconvex function, defined on the open convex set X ⊆ Rn.
Then f is strictly quasiconvex.

Proof Assume the contrary that there exist x , y ∈ X and z ∈ (x, y) such that

f (y) ≤ f (x) ≤ f (z).

According to the second-order strict pseudoconvexity of f we conclude that

∇ f (z)(x − y) = ∇ f (z)(y − x) = 0.

Applying the second-order strict pseudoconvexity again we obtain that f ′′(z; x − y) < 0,
f ′′(z; y − x) < 0. Therefore there exists δ > 0 such that f (z + t (x − y)) < f (z) and
f (z + t (y − x)) < f (z) for all t ∈ (0, δ) which contradict the quasiconvexity of f . 
�

The following result is due to Ginchev and Ivanov [14, Theorem 6].
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Lemma 3.1 (Second order necessary conditions for optimality) Let X be an open set in the
space Rn, the functions f , gi (i = 1, 2, . . ., m) be defined on X. Suppose that x is a local
minimizer of the problem (P) , the functions gi , i /∈ I (x) are continuous at x, the functions
f , gi , i ∈ I (x) are continuously differentiable, and for every direction d ∈ Rn such that
∇ f (x)d = 0 and ∇gi (x)d = 0, i ∈ I (x) there exist the second-order directional derivatives
f ′′(x; d) and g′′

i (x; d), i ∈ I (x). Then corresponding to any critical direction d there exist
non-negative multipliers λ,µ1, . . ., µm, with (λ, µ) �= (0, 0) such that

µi gi (x) = 0, i = 1, 2, . . ., m, ∇L(x) = 0, (3.1)

µi∇gi (x)d = 0, i ∈ I (x), λ∇ f (x)d = 0,

L ′′(x, d) = λ f ′′(x, d) +
∑

i∈I (x)

µi g′′
i (x, d) ≥ 0. (3.2)

Here L = λ f + ∑n
i=1 µi gi is the Lagrange function. Assume further that the Guinard

constraint qualification holds [17]. Then we could suppose that λ = 1.

Definition 3.4 Let x ∈ S where S is the feasible set of the problem (P). Suppose that the
functions f , gi (i = 1, 2, . . ., m) are defined on X , Fréchet differentiable, and second-order
directionally differentiable at any x ∈ S in every critical direction d ∈ Rn . If for every critical
direction d there exists

(λ, µ) ∈ ([0,+∞) × Rm+) \ {(0, 0)}
such that the equations (3.1) and (3.2) are satisfied, then x is called a second-order Fritz John
stationary point (for short, FJ point). If additionally λ = 1, then x is called a second-order
Kuhn-Tucker stationary point (for short, KT point).

The following claim is a simple consequence of Definition 3.4:

Lemma 3.2 Let x be a point from the feasible set S. Suppose that the functions f and gi ,
i ∈ I (x) are Fréchet differentiable and second-order directionally differentiable at x in every
direction d.

(a) If ∇ f (x) = 0 and f ′′(x; d) ≥ 0 for all critical directions d ∈ Rn, then x is a second-
order KT point.

(b) If ∇gi (x) = 0 for some i ∈ I (x) and g′′
i (x; d) ≥ 0 for all critical directions d ∈ Rn,

then x is a second-order FJ point.

We introduce the following definition:

Definition 3.5 We call the problem (P) second-order (strictly) KT pseudoconvex at the point
x ∈ S if the following implication holds:

y ∈ S,

f (y) < f (x)

]
⇒

⎡
⎢⎢⎣

∇ f (x)(y − x) ≤ 0,

∇ f (x)(y − x) = 0 implies f ′′(x; y − x) < 0,

∇gi (x)(y − x) ≤ 0 for all i ∈ I (x),

∇gi (x)(y − x) = 0, i ∈ I (x) imply g′′
i (x; y − x) ≤ 0.⎛

⎜⎜⎝ y ∈ S, y �= x,

f (y) ≤ f (x)

]
⇒

⎡
⎢⎢⎣

∇ f (x)(y − x) ≤ 0,

∇ f (x)(y − x) = 0 implies f ′′(x; y − x) < 0,

∇gi (x)(y − x) ≤ 0 for all i ∈ I (x),

∇gi (x)(y − x) = 0, i ∈ I (x) imply g′′
i (x; y − x) ≤ 0.

⎞
⎟⎟⎠

provided that all necessary derivatives exist. We call (P) second-order (strictly) KT pseudo-
convex if it is second-order (strictly) KT pseudoconvex at each x ∈ S.
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If (P) is second-order (strictly) KT pseudoconvex, then the objective function f is second-
order (strictly) pseudoconvex on S. On the other hand Example 2.2 shows that the property
(P) is second-order pseudoconvex does not imply that the constraints are quasiconvex.

Like KT pseudoconvex problems, second-order KT pseudoconvex ones possess some
useful properties.

Theorem 3.1 Let X be an open set. Suppose that the functions f , gi (i = 1, 2, . . ., m) are
Fréchet differentiable, and second-order directionally differentiable at any x ∈ S in every
critical direction d ∈ Rn. Assume that (P) is second-order (strictly) KT pseudoconvex. Then

(a) each KT point of second-order is a (strict) global minimizer;
(b) every local minimizer of (P) is a global one, provided that f, g ∈ C1(X) and a constraint

qualification holds [17].

Proof Claim (a). Let (P) be second-order KT pseudoconvex and x ∈ S be a second-order KT
point. We prove that x is a global minimizer. Assume that this is not the case and there exists
y ∈ S with f (y) < f (x). We choose the direction d such that d = y − x . The direction
y − x is critical by the inequalities ∇ f (x)(y − x) ≤ 0 and ∇gi (x)(y − x) ≤ 0, i ∈ I (x).
Since x is a KT point there exist λ > 0 and µi ≥ 0, i ∈ I (x) such that (3.1) and (3.2) hold.
Then we conclude from ∇L(x) = 0 that

∇ f (x)(y − x) = ∇gi (x)(y − x) = 0, ∀i ∈ I (x),

such that µi > 0. It follows from the pseudoconvexity of (P) that f ′′(x; y − x) < 0 and
g′′

i (x; y − x) ≤ 0 for all i ∈ I (x) with µi > 0. Hence we obtain that L ′′(x; y − x) < 0
which contradicts (3.2).

Claim (b) follows from Lemma 3.1 and Claim (a). 
�
Theorem 3.1 (a) is a generalization of Theorems 1 and 3 in Ginchev, Ivanov [14].

Lemma 3.3 Let the function f be Fréchet differentiable on the open convex set X ⊆ Rn and
second-order directionally differentiable at every point x ∈ X in every direction d ∈ Rn.

(a) If f is quasiconvex, x, y ∈ X, f (y) < f (x) , ∇ f (x) = 0 and there exists a direction
d ∈ Rn, such that f ′′(x; d) < 0, then f ′′(x; y − x) < 0.

(b) If f is strictly quasiconvex, x, y ∈ X, x �= y, f (y) ≤ f (x), ∇ f (x) = 0 and there exists
a direction d ∈ Rn, such that f ′′(x; d) < 0, then f ′′(x; y − x) < 0.

Proof We prove Claim (a). The proof of (b) is similar. Put z(t) = x +t (y−x) with t ∈ (0, 1).
According to the continuity of f there exists τ > 0 and p = y − τd such that f (p) < f (x).
Let w(t) = x + α(t)d be the point of intersection of the ray {x + td | t ≥ 0} and the straight
line passing through p and z(t). An easy calculation gives that α(t) = tτ/(1 − t). Since f
is quasiconvex, we have

f (z(t)) ≤ max ( f (p), f (w(t))) for 0 < t < 1 .

Therefore

t−2( f (z(t)) − f (x)) ≤ max (t−2( f (p) − f (x)), t−2( f (w(t)) − f (x))).

Since f (p) < f (x) , if t tends to 0 with positive values, then the first term of the above
maximum tends to −∞ . Using that ∇ f (x) = 0 we obtain

f ′′(x; y − x) = lim
t→+0

2 t−2( f (z(t)) − f (x)) ≤ lim
t→+0

2 t−2( f (w(t)) − f (x)).
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According to the equality

f (w(t)) − f (x)

t2 = f (x + α(t)d) − f (x)

α2(t)
· α2(t)

t2 ,

we obtain that

lim
t→+0

2 t−2( f (w(t)) − f (x))

= lim
t→+0

2 α−2(t)( f (x + α(t)d) − f (x)) α2(t)t−2 = τ 2 f ′′(x; d) < 0.

The above inequality yields that f ′′(x; y − x) < 0. 
�

Theorem 3.2 Let X be open and convex, f be (strictly) quasiconvex, gi , i = 1, 2, . . ., m be
quasiconvex. Suppose that f , gi are Fréchet differentiable and second-order directionally
differentiable at every point x ∈ S in every critical direction d ∈ Rn. Then the problem (P)
is second-order (strictly) KT pseudoconvex if and only if each second-order KT point is a
(strict) global minimizer.

Proof We prove the non-strict case. The proof of the strict one is similar.
Let every second-order KT point be a global minimizer. We prove that (P) is second-

order KT pseudoconvex. Choose arbitrary x, y ∈ S with f (y) < f (x). According to the
quasiconvexity of f we conclude that ∇ f (x)(y − x) ≤ 0.

Assume that ∇ f (x)(y − x) = 0. By Lemma 2.5 we have ∇ f (x) = 0. Suppose that
f ′′(x; d) ≥ 0 for all critical directions d ∈ Rn . Then by Lemma 3.2 x is a second-order KT
point which implies by the hypothesis that x is a global minimizer. We obtained a contradic-
tion because y ∈ S and f (y) < f (x). Therefore there exists a critical direction d such that
f ′′(x; d) < 0. Then it follows from Lemma 3.3 that f ′′(x; y − x) < 0.

The claim ∇gi (x)(y − x) ≤ 0 and the implication

∇gi (x)(y − x) = 0, i ∈ I (x) imply g′′
i (x; y − x) ≤ 0

follow directly from the assumption y ∈ S, i ∈ I (x) and the quasiconvexity of gi .
The only if part is a Theorem 3.1 (a). 
�

Theorem 3.3 Let the set X be open and convex. Suppose that the functions f , gi , i =
1, 2, . . ., m are defined on X, differentiable and second-order directionally differentiable at
every feasible point x in every critical direction d ∈ Rn. If f is (strictly) quasiconvex and
each KT point of second-order is a (strict) global minimizer, then f is second-order (strictly)
pseudoconvex on S.

Proof We can prove the theorem using the arguments of Theorem 3.2. 
�
3.2 Second-order FJ pseudoconvex problems

We introduce the following definition:
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Definition 3.6 We call the problem (P) second-order (strictly) FJ pseudoconvex at the point
x ∈ S if the following implication holds

y ∈ S,

f (y) < f (x)

]
⇒

⎡
⎢⎢⎣

∇ f (x)(y − x) ≤ 0,

∇ f (x)(y − x) = 0 implies f ′′(x; y − x) < 0,

∇gi (x)(y − x) ≤ 0 for all i ∈ I (x),

∇gi (x)(y − x) = 0, i ∈ I (x) imply g′′
i (x; y − x) < 0.⎛

⎜⎜⎝ y ∈ S, y �= x,

f (y) ≤ f (x)

]
⇒

⎡
⎢⎢⎣

∇ f (x)(y − x) ≤ 0,

∇ f (x)(y − x) = 0 implies f ′′(x; y − x) < 0,

∇gi (x)(y − x) ≤ 0 for all i ∈ I (x),

∇gi (x)(y − x) = 0, i ∈ I (x) imply g′′
i (x; y − x) < 0.

⎞
⎟⎟⎠

provided that all necessary derivatives exist. We call (P) second-order (strictly) FJ pseudo-
convex if it is second-order (strictly) FJ pseudoconvex at each x ∈ S.

It is obvious that every problem which is (strictly) FJ pseudoconvex with respect to the
Fréchet derivative, is second-order (strictly) FJ pseudoconvex. Really, the existence of the
second-order directional derivative in this case is not required. Each second-order (strictly)
FJ pseudoconvex problem is second-order (strictly) KT pseudoconvex.

Like FJ pseudoconvex problems, second-order FJ pseudoconvex ones possess some useful
properties.

Theorem 3.4 Let X be an open convex set. Suppose that f , gi , i = 1, 2, . . ., m are Fréchet
differentiable and second-order directionally differentiable at any point x ∈ S in every crit-
ical direction d. If (P) is second-order strictly FJ pseudoconvex, then the feasible set S is
convex.

Proof The proof is similar to the proof of Theorem 2.5. We suppose that there exist x , y ∈ S
and z ∈ (x, y), z /∈ S. Using the arguments of Theorem 2.5 we obtain that there exist u, v ∈ S,
an index j ∈ {1, 2, . . ., m} and a sequence {uk}, uk ∈ (u, v), uk → u such that z ∈ (u, v),
(u, v) /∈ S, g j (u) = 0 and g j (uk) > 0. Without loss of generality f (v) ≤ f (u). It follows
from the second-order strict FJ pseudoconvexity that ∇g j (u)(v−u) < 0 or ∇g j (u)(v−u) =
0, g′′

j (u; v − u) < 0. In both cases there exists δ > 0 with g j (u + t (v − u)) < 0 for all
t ∈ (0, δ) which is a contradiction. 
�
Theorem 3.5 Let X be an open set. Suppose that f , gi , i = 1, 2, . . ., m are Fréchet differ-
entiable and second-order directionally differentiable at any point x ∈ S in every critical
direction d.

(a) If (P) is second-order (strictly) FJ pseudoconvex, then every FJ point of second-order is
a (strict) global minimizer.

(b) If (P) is second-order FJ pseudoconvex, then every local minimizer of (P) is global,
provided that f, g ∈ C1(X).

(c) If (P) is second-order strictly FJ pseudoconvex, then every local minimizer of (P) is
global.

Proof The proof of Claim (a) follows the arguments of Theorem 3.1.
Claim (b) follows from Lemma 3.1 and Claim (a).
Claim (c). We conclude from second-order strict FJ pseudoconvexity that f is second-

order strictly pseudoconvex. It follows from Theorem 3.4 that the feasible set S is convex.
Then by Proposition 3.2 f is strictly quasiconvex. Therefore by the definition of strictly
quasiconvex functions every local minimizer of (P) is a global minimizer. 
�

123



46 J Glob Optim (2010) 46:31–47

Theorem 3.6 Let the set X be open and convex. Suppose that the functions f , gi , i =
1, 2, . . ., m are defined on X, differentiable and second-order directionally differentiable
at every feasible point x in every critical direction d ∈ Rn. Suppose that f is (strictly)
quasiconvex on X, gi , i = 1, 2, . . ., m are strictly quasiconvex on X. Then (P) is second-
order (strictly) FJ pseudoconvex if and only if each second-order FJ point is a (strict) global
minimizer.

Proof We prove the non-strict case. Suppose that every second-order FJ point is a global
minimizer. We prove that (P) is second-order pseudoconvex. Let x , y ∈ S and f (y) < f (x).

It follows from the quasiconvexity of f and f (y) < f (x) that ∇ f (x)(y − x) ≤ 0.
Assume that ∇ f (x)(y − x) = 0. Applying the arguments of Theorem 3.2 it follows from

Lemmas 3.2 and 3.3 that ∇ f (x) = 0 and f ′′(x; y − x) < 0.
The inequality ∇gi (x)(y − x) ≤ 0 follows from the quasiconvexity of gi and y ∈ S,

i ∈ I (x) because each strictly quasiconvex function is quasiconvex.
Let ∇gi (x)(y−x) = 0, i ∈ I (x). By the strict quasiconvexity of gi we have gi (z) < gi (x)

for all z ∈ (x, y). Then we prove that g′′
i (x; y − x) < 0 applying Lemmas 3.2, 3.3 and the

other arguments of Theorem 3.2, replacing y by z and f by gi .
The only if part of the proof follows from Theorem 3.5 (a). 
�
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